

SYLLABUS

1. Data about the study program

1.1 Institution	The Technical University of Cluj-Napoca
1.2 Faculty	Electronics, Telecommunications and Information Technology
1.3 Department	Bases of Electronics
1.4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field of study	Technology
1.5 Cycle of study	Bachelor of Science
1.6 Program of study/Qualification	Applied Electronics / Engineer
1.7 Form of education	Full time
1.8 Subject code	17.00

2. Data about the subject

2.1 Subject name		Signals	Signals and Systems						
2.2 Subject area		Theore	Theoretical area						
		Metho	Methodological area						
		Analyt	Analytic area						
2.3 Course responsible Assist. Prof. Ioana Sărăcuţ, PhD Eng. <u>Ioana.Saracut@bel.utcluj</u>				<u>tcluj.ro</u>					
2.4 Teachers in charge with		Assist. Prof. Ioana Sărăcuţ, PhD Eng. Ioana.Saracut@bel.utcluj.ro							
		Assist. Prof. Erwin Szopos, PhD Eng. Erwin.Szopos@bel.utcluj.ro							
seminary / laboratory			Те	ach.A	Assist. Călin Fărcaş, PhD) En	g. CalinFarcas@bel.utclu	<u>j.ro</u>	
2.5 Year of Study	II	2.6 Semeste	er	1	2.7 Assessment	Е	2.8 Subject category	DD/DI	

3. Estimated total time

3.1 Number of hours per week	4	of which: 3.2 course	4	3.3 seminary / laboratory	2
3.4 Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminary / laboratory	28
Distribution of time					hours
Manual, lecture material and notes, bibliography					30
Supplementary study in the library, online specialized platforms and in the field					15
Preparation for seminaries/laboratory works, homework, reports, portfolios, essays					16
Tutoring					5
Exams and tests					3
Other activities					
3.7 Total hours of individual study		69			

· · · · ·	
3.8 Total hours per semester	125
3.9 Number of credit points	5

4. Pre-requisites (where appropriate)

4.1 Curriculum Knowledge acquired in mathematics course and circuit theory course.	
4.2 Competence	Mathematical notions: complex numbers, Laplace transform, trigonometry, Fourier transform, Laplace transform, computation of simple integrals. Relations and theorems for electric circuits.

5. Requirements (where appropriate)

5.1 for the course	Amphitheatre, Cluj-Napoca
5.2 for the seminaries / laboratory classes	Laboratory, Cluj-Napoca

6. Specific competences

<u>. specii</u>	ic competences
	C1. To use the fundamental elements regarding electronic devices, circuits, systems,
	instrumentation and technology
	 C1.1 Recognizing and describing concepts that are specific to the fields of calculability, complexity, programming paradigms, and modeling computational and communication systems
	• C1.5 Providing a theoretical background for the characteristics of the designed systems
	C2 Applying the basic methods for signal acquisition and processing
	C2.1 Temporal, spectral and statistical characterization of signals
	C2.2 Explaining and interpreting the methods of acquisition and processing of signals
	C2.3 Use of simulation environments for signal analysis and processing
se	C2.4 Use of the specific method and tools for signal analysis
Suc	C3 Application of the basic knowledge, concepts and methods regarding the architecture of
ete	computing systems, microprocessors, microcontrollers, programming languages and
d L	techniques
<u> </u>	• C3.4 Development of programs for a general and / or specific programming language,
na	starting from the specification of the requirements and until the execution, debugging
ssic	and interpretation of the results in correlation with the processor used
Professional competences	 C3.5 Projects involving hardware (processors) and software (programming) components
Å	C4. Design and use of low complexity hardware and software applications specific to the
	applied electronics
	 C4.1 Defining the concepts, principles and methods used in the fields: computer
	programming, high-level and specific languages, CAD techniques for making electronic
	modules, microcontrollers, computer systems architecture, programmable electronic
	systems, graphics, reconfigurable hardware architectures
	• C4.2 Explanation and interpretation of the specific requirements of the hardware and
	software structures in the fields: computer programming, high-level and specific
	languages, CAD techniques for making electronic modules, microcontrollers, computer
	systems architecture, programmable electronic systems, graphics, reconfigurable
	hardware architectures
es	
Cross competences	
Cross	N.A.
ŏ	

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	The development of the skills regarding the study of signals and systems.
7.2 Specific objectives	 Knowledge and understanding of basic approaches regarding signals and systems. Development of skills and abilities for the analysis of time- continuous signals.

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

3.	Development of skills and abilities for the analysis of time-
	continuous linear time-invariant systems.

8.1 Lecture	Teaching Methods	Remarks		
 Introduction into Signals and Systems. Classification of signals. Basic operations of signals. Harmonic signals. 				
 Continuous time periodic signals. Non-harmonic signals. Fourier series. Properties of the Fourier series. 	itive evalua			
 Continuous-time aperiodic signals. Fourier transform. 	forma			
4. Properties of the Fourier transform. Ideal filters.	dy,			
 Classification of systems. Description of linear invariant time systems: differential equation, impulse response, transfer function. Laplace transform. 	Presentation, exemplifications, problem presentation, case study, formative evaluation.	-ird.		
 Description of linear invariant time systems: step response, frequency response. 	sentati	olackbc		
7. Applications of LTI systems.	bre	Je [
8. Bode plots.	L E	Use of the blackboard		
 Discrete-time periodic signals. Discrete-time Fourier series. Discrete-time aperiodic signals. Discrete-time Fourier transform. 	s, proble			
10. Description of linear invariant time-discrete systems: difference equation, unit impulse response, transfer function.	plification			
11.Signals sampling. Sampling theorem. Spectral analysis of sampled signals. Reconstruction of time-continuous signals.	on, exem			
12. Amplitude modulation. Special amplitude modulation procedures.	sentati			
13. Position and frequency modulation.	j. j.			
14. Review. Preparation for examination.	-			
Bibliography				
1. Alan V. Oppenheim, Alan S. Willsky - "Signals and Sy Publishing as Prantice Hall, 1997				
2. Raymond A. DeCarlo - "Circuit Analysis: Time Domair Oxford University Press, 2001	n, Phasor, and Laplace Trar	nsform Approaches ",		
3. Luis F. Chaparro - "Signals and Systems using MATLA	B", Academic Press, 2014			
The web page of the course: <u>http://www.bel.utcluj.ro/s</u>	scs/			
8.2 Seminary classes	Teaching Methods	Remarks		
 Introduction into signal theory. Complex numbers. Sinusoidal signals. 	Solving of problems and review of some theoretical aspects. Didactic and	f the oard. of ent rd.		
 Spectra of periodic time-continuous signals- Spectra of aperiodic time-continuous signals. 	iolving o broblem nd revier of some neoretic: aspects. dactic al	Use of the blackboard Use of Digilent board.		

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

www.etti.utcluj.ro

- 5. Bode plots.
- 6. Spectra of discrete-time signals. Sampled signals.
- 7. Modulated signals.

Laboratory classes

1. Introduction of the Analog Discovery Board.

2. Spectrum of periodic time-continuous signals.

3. Spectrum of the periodic square wave.

- 4. First order systems.
- 5. Sampled signals.
- **6.** Amplitude and frequency modulated signals.
- 7. Lab recovery of laboratory activity.

Bibliography

1. Alan V. Oppenheim, Alan S. Willsky - "Signals and Systems (Second Edition)", Pearson Education, Inc. Publishing as Prantice Hall, 1997

2. Raymond A. DeCarlo - "Circuit Analysis: Time Domain, Phasor, and Laplace Transform Approaches ", Oxford University Press, 2001

3. Luis F. Chaparro - "Signals and Systems using MATLAB", Academic Press, 2014

Weekly homework problems, submitted by email.

The web page of the course: <u>http://www.bel.utcluj.ro/scs/</u>

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field.

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job, the expectations of the national organization for quality assurance (ARACIS).

10. Evaluations

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final grade		
10.4 Lecture	The level of acquired theoretical knowledge	2 written tests (30p) – TC	Max 30%		
10.5 Laboratory	•	Evaluation during the semester (10p) – TL	Max 10%		
Exam	The level of acquired theoretical knowledge, of skills and abilities	Written examination (60p) – E	Max 60%		
Final mark = (TC+TL+E) / 10					

10.6 Minimum standard of performance

Quality level:

Minimum knowledge:

- Knowledge and understanding of basic approaches regarding signals and systems
- Description of linear invariant time systems: step response, frequency response
- Signals sampling. Sampling theorem. Spectral analysis of sampled signals. Reconstruction of time-continuous signals

Minimum competences:

- Development of skills and abilities for the analysis of time-continuous signals.
- Development of skills and abilities for the analysis of time-continuous linear time-invariant systems

Quantitative level:

• TC+TL > 20p and E > 25p

Date of filling in:	Teachers		Signature
29.09.2019	Course	Assist. Prof. Ioana Sărăcuţ, PhD Eng.	
	Applications	Assist. Prof. Ioana Sărăcuţ, PhD Eng.	
		Assist. Prof. Erwin Szopos, PhD Eng.	
		Teach.Assist. Călin Fărcaş, PhD Eng.	

Date of approval in the Department of Bases of Electronics	Head of department Prof. Sorin HINTEA, PhD Eng.
Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology	Dean Prof. Gabriel OLTEAN, PhD Eng.