

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca	
1.2	Faculty	Electronics, Telecommunications and Information Technology	
1.3	Department	Bases of Electronics	
1.4	Field of study	Electronic Engineering, Telecommunications and Information Technologies	
1.5	Cycle of study	Bachelor of Science	
1.6	Program of study/Qualification	Applied Electronics/ Engineer	
1.7	Form of education	Full time	
1.8	Subject code	20.00	

2. Data about the subject

2.1	Subject name			Fundamen	undamental Electronic Circuits				
2.2	Theoretical area Subject area Methodical area Analytic area								
2.3	Course respor	nsible	9	Prof. Gabri	Prof. Gabriel OLTEAN, PhD Eng., gabriel.oltean@bel.utcluj.ro				
2.4	Teachers in charge of applications			Assist. prof	. E		g., <u>emilia</u>	tean@bel.utcluj.ro .sipos@bel.utcluj.ro a.ivanciu@bel.utcluj.ro	
2.5 \	ear of study	Ш	2.6	Semester	1	2.7 Assessment	E	2.8 Subject category	DD/DI

3. Estimated total time

3.1 Number of hours per week	5	3.2 of which, course:	2	3.3 seminar/lab	1/2
3.4 Total hours in the curriculum	70	3.5 of which, course:	28	3.6 seminar/lab	42
Individual study	•		•		hours
Manual, lecture material and notes, bibliography					21
Supplementary study in the library, online and in the field				-	
Preparation for seminars/laboratory works, homework, reports, portfolios, essays					28
Tutoring					3
Exams and tests					3
Other activities					-
					•

3.7	Total hours of individual study	55
3.8	Total hours per semester	125
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	
4.2	Competence	Relations and theorems for electric circuits, frequency response
4.2		representation; operating principles for electronic devices: diode,

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

operational amplifier, MOSFET and BJT transistors; use of
electronic devices in electronic circuits; analysis methods for
electronic circuits; voltage transfer characteristics; transfer
function

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Cluj-Napoca

6. Specific competences

According to the RNCIS grid:

- C1. Use of the fundamental elements related to the devices, circuits, systems, instrumentation and electronic technology
- C2. Application of basic methods for signals acquisition and processing
- C4. Design and use of low complexity hardware and software applications specific to the applied electronics
- C5. Application of the basic knowledge, concepts and methods from: power electronics, automatic systems, electricity management, electromagnetic compatibility

Other competences:

Professional competences

- knowledge of transistor biasing circuits for transistor amplifiers;
- knowledge of logic circuits with transistors;
- knowledge of small signal models for transistors and amplifiers with transistors (MOS, BJT);
- identification of feedback circuits structure, type of feedback, the fundamental equation of the negative feedback;
- knowledge of configuration, operating principle and analysis and (re)design methods for fundamental electronic circuits: amplifiers with one transistor, current sources and mirrors, linear voltage regulators, sinusoidal and non-sinusoidal oscillators, power amplifiers, other circuits with operational amplifiers;
- using of lab instrumentation for the experimental study of electronic circuits;
- using of experimental boards;
- connecting the lab instrumentation with the experimental boards, in order to experimentally study electronic circuits;
- using the computer to the numerical data obtained through the explorations;
- storing and analysis the numerical data obtained through the explorations.

Cross competences CT1: Methodical analysis of the problems encountered in the activity, identifying the elements for which there are established solutions, thus ensuring the fulfilment of professional tasks

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	Developing the competences regarding the use of electronic devices, regarding the use, analysis and (re)design of fundamental electronic circuits.
7.2	Specific objectives	Recognizing and understanding basic concepts specific to fundamental electronic circuits.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

	2. Developing skills and abilities necessary for the use of
	electronic circuits
	3. Developing skills and abilities for the analysis and (re)design
	of electronic circuits.

8. Contents

8.1.	. Lecture (syllabus)	Teaching methods	Notes
1.	Introduction. Course Presentation. Transistor Circuits	Presentation,	Use of .ppt
2.	Transistor Digital Circuits. Transistor Amplifier. DC biasing in active region	heuristic conversation,	presentation, projector,
3.	MOSFET Biasing and BJT Biasing in active region	exemplification,	blackboard
4.	MOSFET Small-Signal Model. MOSFET Basic Amplifiers	problem presentation,	
5.	BJT Small-Signal Model. BJT Basic Amplifiers	teaching	
6.	Frequency Response: CS and CE. Current Sources and Current Mirrors with MOSFET and BJT	exercise, case study, formative	
7.	Power Amplifiers. Class A, Class B and Class AB Power Amplifiers	evaluation	
8.	Feedback Circuits. Feedback Configurations. Negative feedback effects over an amplifier parameters		
9.	DC voltage regulators. Linear voltage regulators with op amp. Over - current and short - circuit protection.		
10.	Integrated voltage regulators. The 723 voltage regulator. Switching voltage regulators.		
11.	Sinusoidal oscillators. Op – amp and Wien bridge oscillators. Automatic control of the amplitude.		
12.	Nonsinusoidal oscillators. Astable multivibrators. LM555 timer.		
13.	Class D power amplifier. Operating principle. PWM generator. Power stage. Low – pass filter.		
14.	Recapitulation. Exam preparation		

Biblography

- 1. Oltean, G., Electronic Devices, Editura U.T. Pres, Cluj-Napoca, ISBN 973-662-220-7, 2006; 317 pp.
- 2. Oltean, G., Circuite electronice, UT Pres, Cluj-Napoca, 2007, ISBN 978-973-662-300-4, 203 pp.
- 3. Sedra, A. S., Smith, K. C., Microelectronic Circuits, Fifth Edition, Oxford University Press, ISBN: 0-19-514252-7, 2004.

On – line references

1. Oltean, G, Fundamentals of Electronic Circuits, on-line: http://www.bel.utcluj.ro/dce/didactic/fec Sipos, Emilia, Ivanciu, Laura, Dispozitive Electronice. Probleme rezolvate, 2016

8.2	. Seminar / laboratory / project	Teaching methods	Notes
	Laboratory		Use of
1.	Introduction. Labor protection	Didactic and experimental	laboratory
2.	Collecting experimental data using the computer		instruments, experimental
3.	Logic circuits with TMOS	proof, didactic	boards,
4.	Single-stage BJT amplifiers. CE configuration	exercise, team	computers,
5.	Single-stage BJT amplifiers. CC, CB configurations	work	

6.	Class B amplifiers	smart board,
7.	Negative feedback effects on amplifiers	blackboard
8.	LM7805 voltage regulator	
9.	DC – DC converter	
10.	Multivibrator circuits using the 555 timer	
11.	Sinusoidal oscillator	
12.	Function generator	
13.	Laboratory test	
14.	Lab recovery and finalization of laboratory activity	
	Seminars	
1.	Logic circuits with transistors. D.C. equivalent circuit	
2.	Basic Amplifiers with MOSFET	
3.	Basic Amplifiers with BJT. Current sources	
4.	Power amplifiers. NF Circuits	
5.	DC Voltage Regulators	
6.	Sinusoidal Oscillator	
7.	Nonsinusoidal Oscillators. Recap	

Bibliography

- 1. Oltean, G., Electronic Devices, Editura U.T. Pres, Cluj-Napoca, ISBN 973-662-220-7, 2006; 317 pp.
- 2. Oltean, G., Circuite electronice, UT Pres, Cluj-Napoca, 2007, ISBN 978-973-662-300-4, 203 pp.
- 3. Sedra, A. S., Smith, K. C., Microelectronic Circuits, Fifth Edition, Oxford University Press, ISBN: 0-19-514252-7, 2004.

On – line references

- 2. Oltean, G, Fundamentals of Electronic Circuits, on-line: http://www.bel.utcluj.ro/dce/didactic/fec
- 3. Sipos, Emilia, Ivanciu, Laura, Dispozitive Electronice. Probleme rezolvate, 2016

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job, and the expectations of the Romanian Agency for Quality Assurance (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of theoretical knowledge and practical skills acquired for the analysis and (re)design of electronic circuits	- Written exam: problem solving	- E, max 10 pts. 60%

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

	The level of the abilities acquired	- Continuous formative	- L, max. 10 pts.
10.5 Seminar/	for problem solving and	evaluation	25%
Laboratory	experimental analysis of electronic		- S, max. 10 pts.
	circuits		15%

10.6 Minimum standard of performance

Quality level:

Minimum knowledge:

- ✓ Recognizing and understanding basic concepts specific to fundamental electronic circuits
- ✓ Analyzing and (re)designing of electronic circuits

Minimum competences:

- ✓ To recognize and understand basic concepts specific to fundamental electronic circuits.
- \checkmark To develop skills and abilities necessary for the use of electronic circuits
- ✓ To analyze and (re)design of electronic circuits.

Quantitative level:

- ✓ Full laboratory attendance
- ✓ Final grade computed as: Grade = 0.6E+0.25L+0.15S, where L \geq 5, E \geq 4

Data of filling in: 01.10.2019	Responsible	Title Surname NAME	Signature
	Course	Prof. Gabriel OLTEAN, PhD Eng.	
	Applications	Prof. Gabriel OLTEAN, PhD Eng.	
		Assist.prof. Emilia ŞIPOŞ, PhD Eng.	
		Assist.prof. Laura IVANCIU, PhD Eng.	

Date of approval in the department ———————————————————————————————————	Head of department Prof. Sorin HINTEA, PhD Eng.	
Date of approval in the council of the faculty	Dean Prof. Gabriel OLTEAN, PhD Eng.	