

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca	
	Faculty of Electronics, Telecommunications and information	
1.2 Faculty	Technology	
1.3 Department	Bases of Electronics	
1.4 Field of study	Electronic Engineering, Telecommunications and Information	
1.4 Field of Study	Technologies	
1.5 Cycle of study	Bachelor of Science	
1.6 Program of study / Qualification	Applied Electronics / Engineer	
1.7 Form of education	Full time	
1.8 Subject code	27.00	

2. Data about the subject

2.1 Subject name		Systen	Systems with Digital Integrated Circuits						
				tical area					
				dological area					
				rea					
2.3 Course responsible			Pr	of. Sc	orin Hintea, PhD Eng. –	sor	in.hintea@bel.utcluj.ro		
2.4 Teacher in charge with seminar / laboratory / project			Assist. Prof. Paul FARAGO, PhD Eng. – <u>paul.farago@bel.utcluj.ro</u>						
			Assist. Prof. Robert GROZA, PhD Eng. – <u>robert.groza@bel.utcluj.ro</u>						
			Assist. Prof. Botond KIREI, PhD Eng. – <u>kirei.botond@bel.utcluj.ro</u>						
			Assoc.Prof. Mihaela Cîrlugea, PhD Eng.						
			mihaela.cirlugea@bel.utcluj.ro						
2.5 Year of study	II	2.6 Semeste	er	2	2.7 Assessment	Ε	2.8 Subject category	DD/DI	

3. Estimated total time

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 seminar / laboratory	2
3.4 To Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar / laboratory	28
Distribution of time					hours
Manual, lecture material and notes, bibliography					35
Supplementary study in the library, online specialized platforms and in the field					-
Preparation for seminars / laboratories, homework, reports, portfolios and essays					28
Tutoring					3
Exams and tests					3
Other activities					-
3.7 Total hours of individual study 69					

5.7 Total hours of mulvidual study	09
3.8 Total hours per semester	125
3.9 Number of credit points	5

4. Pre-requisites (where appropriate)

	Electric signals, passive and active electric components, electric circuit relations
4.2 competence	and theorems, frequency behavior and frequency response, binary logic, logic
	circuits behavior, logic circuits analysis and synthesis.

5. Requirements (where appropriate)

5.1. for the course	Amphitheatre, Cluj-Napoca
5.2. for the seminars / laboratories / projects	Laboratory, Cluj-Napoca

6. Specific competences

	C1. Usage of the fundamental elements regarding the electronic devices, circuits, systems,		
	instrumentation and technology		
	C1.4 Usage of the electronic instruments and of the specific methods for characterizing		
	and evaluating the performances of electronic circuits and systems		
	C2. Applying the basic methods for signal aquirements and processing		
	 C2.3 Usage of simulation environments for signal analysis and processing 		
	 C2.4 Usage of the specific methoda and instruments for signal analysis 		
	C2.5 Design of elementary functional blocks for digital signal processing with hardware		
ŝ	and software implementation		
Professional competences	C3. Application of the basic knowledge, concepts and methods regarding the architecture of		
etel	computing systems, microprocessors, microcontrollers, programming languages and techniques		
ubi	 C3.4 Development of programs for a general and / or specific programming language, 		
Ō	starting from the specification of the requirements and until the execution, debugging		
nal	and interpretation of the results in correlation with the processor used		
sio	C4. Design and use of low complexity hardware and software applications specific to the applied		
fes	electronics		
Pro	 C4.1 Defining the concepts, principles and methods used in the fields: computer 		
_	programming, high-level and specific languages, CAD techniques for making electronic		
	modules, microcontrollers, computer systems architecture, programmable electronic		
	systems, graphics, reconfigurable hardware architectures		
	C5. To apply knowledge, concepts and basic methods from power electronics, automated		
	systems, electric energy management, electromagnetic compatibility		
	• C5.2 Qualitative and quantitative interpretation of the functioning of circuits in the fields		
	of: power electronics, automatic systems, electricity management, medical electronics,		
	auto electronics, consumer goods; analysis of the functioning from the point of view of		
	electromagnetic compatibility		
es	N.A.		
Cross competences			
beti			
ů.			
s cc			
ros			
U			

7. Discipline objectives (as results from the key competences gained)

7.1 General objective	Developing the competences regarding the use, analysis and (re)design of digital circuits and systems
-----------------------	---

Universitatea Tehnică din Cluj-Napoca • Facultatea de Electronică, Telecomunicații și Tehnologia Informației Str. George Barițiu nr. 26-28, 400027, Cluj-Napoca, Tel: 0264-401224, Tel/Fax: 0264-591689, http://www.etti.utcluj.ro

7.2 Specific objectives	1. Recognizing and understanding basic concepts specific to	
	fundamental electronic circuits.	
	2. Developing skills and abilities necessary for the use of fundamental	
	electronic circuits.	
	Developing skills and abilities for the analysis and (re)design of digital	
	integrated circuits.	

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
1. Introducing Digital Integrated Circuits Systems.		
The MOS Transistor. Functioning and		
characteristics.		
2. Internal structures in CMOS digital circuits. The		
CMOS inverter and the fundamental logic gates.		
3. Combinational and sequential circuits in VLSI		
CMOS technology.		
4. Performance analysis of the CMOS circuits.		
Propagation times and dissipated power		
5. Optimization methods of the speed		
performances for VLSI CMOS circuits.		
6. Shift registers. Internal structure and		
functioning.	Presentation,	
7. Applications with shift registers	heuristic	
8. Arithmetical opperations. CMOS adders,	conversation,	
subtractors and multipliers.	exemplification,	Use of .ppt presentation,
9. Arithmetic VLSI circuits. Adders, subtractors and	problem	projector, blackboard
multipliers in VHDL code. Design of the great	presentation,	
capacity circuits	teaching exercise,	
10. Semiconduncting memories: structure and	case study, formative	
organization. ROM, PROM, EPROM, EEPROM and	evaluation	
FLASH memories. Internal structures and		
configurations. Electrical and time characteristics		
of the memories.		
11. RAM statical and dynnamic memories.		
Structures and characteristics.		
12. Applications with semiconducting memories.		
Connecting memories and memory extensions.		
13. Programmable logic areas. PLA, PAL and FPGA		
structures		
14. Pulse generators. Monostables and circuits fo		
digital signal processing. Circuits for interface and		
display.		
References		
1. Sorin Hintea, Gabor Csipkes, Doris Csipkes,	Paul Farago, Mihaela Cirl	ugea – Digital Integrated

 Sorin Hintea, Gabor Csipkes, Doris Csipkes, Paul Farago, Mihaela Cirlugea – Digital Integrated Circuits. Editura Casa Cărții de Știință, Cluj-Napoca, 2017

2. Sorin Hintea, Mihaela Cirlugea, Lelia Festila. Circuite Integrate Digitale. Editura UT Press, Cluj-Napoca, 2005

3. Gheorghe Toacse, Dan Nicula, Electronică Digitală, Editura Tehnică 2005

4. J. Wakerly – Digital Design, Principle & Practices, Prentice Hall, 1999

- 5. Rabaey J.M., Chandrakasan A., Nikolic B. Digital Integrated Circuits. A design perspective. Prentice Hall, 2003.
- 6. Weste N.H.E, Harris D. CMOS VLSI Design. A Circuits and Systems Perspective. Pearson Addison Wesley, 2005.
- 7. H. Kaeslin, "Digital Integrated Circuit Design From VLSI Architecture to CMOS Fabrication", Cambridge University Press, 2008.
- 8. C. H. Roth, L.K. John, "Digital System Design using VHDL", Cengage Learning, 2008.
- 9. Ercegovac, M., Lang T., Moreno J. Introduction to Digital Systems. John Wiley & Sons Inc, New-York, 1999

1010, 1999		
8.2 Seminar / laboratory / project	Teaching methods	Notes
Laboratory	Didactic and	Use of laboratory
1. Introduction in CAD environment	experimental proof,	instrumentation,
2. The CMOS inverter.	didactic exercise,	experimental boards,
3. Logic CMOS gates	team work	computers,
4. Transmission gates. Circuits with transmission		white/magnetic board
gates		
5. Shift registers. Applications.		
6. RAM Memories. Aplications.		
7. Laboratory tests.		
Project		
1. Introduction in the VHDL environment		
2. VHDL syntax and elementary logic gates		
simulation		
3. Structural design code VHDL		
4. Behavioral design code in VHDL		
5. Counters and shift registers in VHDL code. State		
automata		
6. Memories in VHDL code. Applications with		
memories.		
7. Project presentation and evaluation		
Bibliography		

Bibliography

- 1. Sorin Hintea, Gabor Csipkes, Doris Csipkes, Paul Farago, Mihaela Cirlugea Digital Integrated Circuits. Editura Casa Cărții de Știință, Cluj-Napoca, 2017
- 2. Gabor Csipkes, Doris Csipkes, Sorin Hintea, Mihaela Cîrlugea "Circuite integrate digitale: culegere de probleme", editura UT Press 2011
- 3. C. Rus, S.Hintea, Doris Csipkes. Circuite integrate digitale.Structuri interne. Indrumator de laborator. U.T. Press, Cluj-Napoca, 2006
- 4. Paul Farago, Botond Kirei, Gabor Csipkes, Sorin Hintea DESCRIEREA IN VHDL A SISTEMELOR CU CIRCUITE INTEGRATE DIGITALE - Indrumator de Proiectare si Simulare. Editura U.T.PRESS, Cluj-Napoca, 2014

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations (for instance ARIES) and the employers in the field, where the students carry out the internship stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and practical skills	Written test	80%
10.5 Seminar/ Laboratory	The level of acquired knowledge and abilities	Ongoing verification through laboratory tests	20%
10.6 Minimum s	tandard of performance		
Qualitative leve	I		
Minimal knowle	dge		
- Knowled	ge of the construction of CMOS digital circuits		
 Knowled systems 	ge of the main categories of digital circuits and	their incorporation into m	ore complex
Minimal compet	ences		
- Be able	to analyze the functioning of digital circuits usin	g the SPice simulator	
- Know ho	ow to design digital circuits using high level VHD	L language	
Quantitative lev	vel 🛛		
✓ Perform	ing all laboratory work		

- ✓ The exam, laboratory and project marks must be at least 5: L ≥ 5, P ≥ 5 and E ≥ 5
- ✓ The mark for the discipline is calculated with the relation $0,5E+0,3P+0,2L \ge 5$

Date of filling in: 29.09.2019	Responsible	Title Surname NAME	Signature
	Course	Prof. Sorin Hintea, PhD Eng.	
	Applications	Assist. Prof. Paul FARAGO, PhD Eng.	
		Assist. Prof. Robert GROZA, PhD Eng.	
		Assist. Prof. Botond KIREI, PhD Eng.	
		Assoc.Prof. Mihaela Cîrlugea, PhD Eng	

Date of approval in the Department of Basis of ElectronicsHead of DepartmentProf. Sorin HINTEA, PhD Eng.

Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology Dean Prof. Gabriel OLTEAN, PhD Eng.