

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1 Institution	Technical University of Cluj-Napoca
1.25	Faculty of Electronics, Telecommunications and information
1.2 Faculty	Technology
1.3 Department	Bases of Electronics
1 4 Field of study	Electronic Engineering, Telecommunications and Information
1.4 Field of study	Technologies
1.5 Cycle of study	Bachelor of Science
1.6 Program of study / Qualification	Applied Electronics / Engineer
1.7 Form of education	Full time
1.8 Subject code	39.00

2. Data about the subject

	_								
2.1 Subject name			Digital Signa	al Pro	ocessing				
			Theoretical area						
2.2 Subject area			Methodical area						
			Analytic area						
2.3 course responsible			Assoc.Prof. Lăcrimioara-Romana GRAMA, PhD eng –						
			Lacrimioara.Grama@bel.utcluj.ro						
2.4.7			Assoc.Prof. Lăcrimioara-Romana GRAMA, PhD eng –						
2.4 Teachers in charge			Lacrimioara	Lacrimioara.Grama@bel.utcluj.ro					
with laboratory			Alexandru Cristian LODIN, PhD eng – <u>Alexandru.Lodin@bel.utcluj.ro</u>						
2.5 Year of study	Ш	2.6	6 Semester	2	2.7 Assessment	E	2.8 Subject category	DD/DI	

3. Estimated total time

3.1 Number of hours per week	4	Of which: 3.2 course	2	3.3 laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 laboratory	28
Distribution of time					
Manual, lecture material and notes, bibliography					
Supplementary study in the library, online specialized platforms and in the field					
Preparation for seminars / laboratories, homework, reports, portfolios and essays					2
Tutoring					
Exams and tests					
Other activities: NA					0

3.7 Total hours of individual study	19
3.8 Total hours per semester	75
3.9 Number of credit points	3

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA Facultatea de Electronică, Telecomunicații și Tehnologia Informației

4. Pre-requisites (where appropriate)

and the desire of the control					
	Mathematical Analysis, Linear Algebra, Applied Informatics, Special Mathematics, Differential Equations, Electronic Devices, Computer Aided				
I/I 1 curriculum					
	Graphics, Signals and Systems, Digital Integrated Circuits, Circuits Analysis and				
	Synthesis, Systems with Digital Integrated Circuits, Software Engineering				
12 compotonco	Knowledge of mathematics, signal theory, electronic devices, digital integrated				
4.2 competence	circuits; use of MATLab development environment				

5. Requirements (where appropriate)

15.1. for the course	Amphitheatre (with blackboard and video projector), Cluj- Napoca	
5.2. for the seminars/ laboratories/ projects	Laboratory (with computers and blackboard), Cluj-Napoca	

6. Specific competences

٠.	specific competences							
	Professional competences	 C2 Applying the basic methods for signal acquisition and processing C2.1 Temporal, spectral and statistical characterization of signals C2.2 Explaining and interpreting the methods of acquisition and processing of signals C2.3 Use of simulation environments for signal analysis and processing C2.4 Use of the specific method and tools for signal analysis C3 Application of the basic knowledge, concepts and methods regarding the architecture of computing systems, microprocessors, microcontrollers, programming languages and techniques C3.4 Development of programs for a general and / or specific programming language, starting from the specification of the requirements and until the execution, debugging and interpretation of the results in correlation with the processor used C3.5 Projects involving hardware (processors) and software (programming) components 						
	Cross competences	CT1. Methodical analysis of problems encountered in the activity, identifying the elements for which there are established solutions, thus ensuring the fulfillment of professional tasks						

7. Discipline objectives (as results from the key competences gained)

7.1 General	Development of professional skills in the field of			
objective	signal and system analysis,			
Objective	digital filter design			
7.2 Specific objectives	 Assimilating theoretical knowledge regarding signal and system analysis, digital filter design using appropriate software tools (MATLab) Interpretation of specific phenomena from signal analysis using Fourier transform, discrete Fourier transform, fast Fourier transform Obtaining the skills needed to implement and evaluate the performance of digital filters 			

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicații și Tehnologia Informației

8. Contents

8.1 Lecture (syllabus)	Teaching methods	Notes
1. Course overview. Introduction to digital signal processing		
2. Discrete-time signals and systems		
3. Analysis of discrete-time linear time invariant systems		
4. Direct-form implementation of discrete-time systems. Linear time invariant systems characterized by difference equations	Presentation,	
5. The z-transform	heuristic 	
6. z-domain analysis of LTI systems. Fourier series for discrete-time periodic Signals	conversation, exemplification,	Use of
7. Fourier transform for discrete-time aperiodic signals and frequency domain characteristics of LTIS	problem presentation,	blackboard and video
8. Discrete Fourier transform	teaching exercise,	projector
9. Fast Fourier transform	case study, demonstration,	
10. Implementation of FIR systems. Implementation of IIR systems	questioning	
11. LTIS as frequency selective filters. Linear-phase FIR filters	questioning	
12. Design of digital filters (FIR and IIR)		
13. Quatization		
14. Digital signal processing summary. Exam example		

Bibliography

- [1]. C. Rusu, L. Grama, Lecture notes in digital signal processing, Ed. Risoprint, 2009.
- [2]. J. G. Proakis, D. G. Manolakis, *Digital signal processing principles, algorithms and applications*, Pearson, 2013.
- [3]. C. Rusu, *Prelucrarea numerică a semnalelor*, Ed. Risoprint, 2002.
- [4]. C. Rusu, *Prelucrări digitale de semnale*, Ed. Risoprint, 2000.
- [5]. Discipline web page (lecture slides (password required), solved problems, proposed problems) http://sp.utcluj.ro/Teaching_IIIEA.html
- [6]. S. L. Marple Jr., *Digital Spectral Analysis*, Dover Publications, 2nd ed, 2019.
- [7]. R. H. McClellan, R. Schafer, M. Yoder, *DSP First*, Pearson, 2nd ed, 2015.
- [8]. R. Allred, Digital Filters for Everyone, Creative Arts & Sciences House, 3rd ed, 2015.
- [9]. S. Smith, *Digital Signal Processing: A Practical Guide for Engineers and Scientists*, Newnes, 1st ed, 2013.
- [10]. A. V. Oppenheim, *Discrete-Time Signal Processing*, Pearson, 3rd ed, 2009.
- [11]. S. Mitra, Digital signal processing a computer-based approach, McGraw Hill, 2006.

8.2	! Seminar / laboratory / project	Teaching methods	Notes
1.	Introduction to MATLab		
2.	Discrete-time signals		
3.	Sampling of analog signals		(50
4.	Discrete-time linear time-invariant systems	Conversation,	Use of PCs,
5.	Fourier transform and Discrete Fourier transform	explanation, case	specific
6.	Linear and circular convolution	study, practical demonstration,	software and
7.	Practical evaluation from laboratories 1 - 6 (laboratory test): 30	debate,	laboratory
	minutes for each student	surveying,	guide for
8.	Finite impulse response filters. Design method	questioning,	teaching,
9.	Discrete-time linear time-invariant systems as frequency selective	teamwork	blackboard
	filters	CCAMINOTR	2.acboara
10.	. Infinite impulse response filters. Indirect design methods		
11.	. Quantization of digital filter coefficients		

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

Facultatea de Electronică, Telecomunicatji și Tehnologia Informației

12. Practical evaluation from laboratories 8 - 11 (laboratory test): 30
minutes for each student. Responses to questions
13. Seminar
14. Seminar

Bibliography

- [1]. L. Grama, Digital signal processing laboratory guide, Ed. UTPRESS, 2014.
- [2]. L. Grama, C. Rusu, Prelucrarea numerică a semnalelor aplicații și probleme, Ed. UTPRESS, 2008.
- [3]. L. Grama, A. Grama, C. Rusu, Filtre numerice aplicații și probleme, Ed. UTPRESS, 2008.
- [4]. Discipline web page (laboratory examples and exercises) http://sp.utcluj.ro/Teaching IIIEA.html
- [5]. S. L. Marple Jr., Digital Spectral Analysis MATLAB® Software User Guide, Dover Publications, 2019.
- [6]. L. Chaparro, Signals and systems using MATLAB, Academic Press, 2nd ed, 2014.
- [7]. M. X. Cohen, Fundamentals of time-Frequency analyses in Matlab/Octave, sinc(x) Press, 1st ed, 2014.

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job (in the field of signal analysis, and of design, simulation and testing digital system), and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	The level of acquired theoretical knowledge and	B – Continuous formative evaluation (classes attendance and responses to questions during lecture class)	-B, max. 2 pct.
	practical skills	WE – Summative evaluation written exam (problems solving)	pct., 60%
10.5 Seminar /Laboratory	The level of acquired knowledge and abilities	 PE – 2 formative evaluation tests (practical lab exam – exercises must be implemented in MATLab) the grades obtained on these tests also consider the activity during the semester (problem solving and implementation; responses to questions) 	-PE1, max 10 pct., 20% -PE2, max 10 pct., 20%

10.6 Minimum standard of performance

Quality level:

Minimum knowledge:

- Knowledge of the main type and properties of discrete-time signal and systems
- Knowledge of the main transforms used for digital signal processing

Minimum competences:

- Apply methods of analysis and synthesis of discrete-time signals and systems
- Design digital filters for different applications
- Interpret the data obtained from analysis of discrete- time signals and systems

Quantitative level:

- WE ≥ 4 and 0,6WE + 0,2PE1 + 0,2PE2 ≥ 4.5
- Final grade = 0,6(WE+ B) + 0,2PE1 + 0,2PE2

UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA Facultatea de Electronică, Telecomunicații și Tehnologia Informației

Date of filling in:	Responsible	Title surname NAME	Signature
29.09.2019	Course	Assoc.Prof. Lăcrimioara-Romana GRAMA, PhD eng.	
	Applications	Assoc.Prof. Lăcrimioara-Romana GRAMA, PhD	
		eng.	
		Alexandru Cristian LODIN, PhD eng.	

Date of approval in the Department of Bases of Electronics	Head of Department Prof. Sorin HINTEA, PhD Eng.
Date of approval in the Council of Faculty of Electronics, Telecommunications and Information Technology	Dean Prof. Gabriel OLTEAN, PhD Eng.