UNIVERSITATEA TEHNICĂ DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Electronics, Telecommunications and Information
	lacuity	Technology
1.3	Department	Bases of Electronics
1.4	Field of study	Electronics and Telecommunications Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Telecommunications Technologies and Systems / Engineer
1.7	Form of education	Full time
1.8	Subject code	49.20

2. Data about the subject

2.1	Subject name Optoelectronics Systems in Telecommunications (SOT)					SOT)					
2.2	Subject area					Optoelectronics and Photonics					
2.3	2.3 Course responsible/lecturer				Conf. eng Ramona Voichita Galatus, PhD eng.						
2.4	4 Teachers in charge of applications Con				Conf. eng Ramona Voichita Galatus, PhD eng.						
					Lecturer Lorant Szolga, PhD eng.,						
						Drd	Loredana Buzu	ıra			
	Drd Adriana Potarniche										
2.5	Year of study	IV	2.6	Semester	1	2.7	Assessment	Exam	2.8	Subject category	O/DF

3. Estimated total time

Year	Subject name	No.	Course	App	licatio	ons	Course	App	licati	ons	Indiv.		
/		of									study	\ <u>-</u>	dits
Sem.		weeks	[hou	ırs/w	eek]			[hour	s/ser	n.]		[5	Credits
				S	L	Р		S	L	Р		_	
III /	Optoelectronics Systems	14											
1''' 1	in Telecommunications		2		2		28		28		64	120	5
'	(SOT)												

3.1	Number of hours per week	4	3.2	of which, course	2	3.3	applications	2
3.4	Total hours in the curriculum	56	3.5	of which, course	28	3.6	applications	28
Indivi	dual study		•	•				Hours
Manu	Manual, lecture material and notes, bibliography							28
Suppl	lementary study in the library, o	nline a	nd in th	e field				4
Prepa	aration for seminars/laboratory v	vorks,	homew	ork, reports, portfo	lios,	essays		26
Tutori	Tutoring							3
Exam	Exams and tests						3	
Other	activities							0

3.7	Total hours of individual study	64
3.8	Total hours per semester	120
3.9	Number of credit points	5

4. Pre-requisites (where appropriate)

4.1	Curriculum	Optoelectronics Lectures
4.2	Competence	Optoelectronics Lab

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Cluj-Napoca
5.2	For the applications	Laboratory, Cluj-Napoca

6. Specific competences

	1	
	Theoretical knowledge (what the student must know):	After completing the discipline, students will learn: – phenomenology governing optical transmissions. – Most optoelectronic devices used in telecommunications. Specific information related to the optical networks, optical system installation, measurement, operations, and specific design software.
Professional competences	Acquired skills (what the student is able to do):	After completing the discipline, students will be able to: - to use a specific simulator (ex. Liekki Application Designer, Optiwave, Matlab applications) - they will know to make the data interpretation using setup for Polarization effects, using He-Ne Laser, Double and multiple slit and holes diffraction, Holograms, Interferometry for data modulation, Doppler effect, Spatial filtering - make interpretation of a power levels map for optical components (Power budget) - to choose components, parts, equipment to design an optical system integrated for a wide range of applications - to implement optical components in communication systems, networks design process - they will know the types of optical fibers and their characteristics, optical connectors - they will know how to use optical fiber welding machine - splicer - to interpret data derived from measurements with the OTDR - they will know the HFC/all-optical network equipment - to set up an optical connection between two computers / network.
	Acquired abilities: (what type of equipment the student is able to handle)	After completing the discipline, students will be able to: -Use laboratory equipment (power supplies, digital oscilloscopes), the fiber cleaver, and welding equipment, fiber optic node installed in the laboratory. - Use the specific hardware and software tools; - To know how to measure and interpret experimental results.
	In accordance with Grila1 and Grila2 t	[se completeaza de coordonatorul programului de studiu]
Cross	compet — ences (Grila 1 and	[se completeaza de coordonatorul programului de studiu]

7. Discipline objectives (as results from the key competences gained)

7.1	General objectives	Development of professional skills in analysis, design, simulation and testing of optoelectronic systems for telecommunications.
7.2	Specific objectives	 Obtain the theoretical knowledge for the design and simulation of optoelectronic systems using advanced simulation programs (Liekki Application Designer, Zemax, Optiwave, Comsol). Obtaining skills and practical abilities required for the analysis, implementation, measurement and operation of telecommunications optoelectronic systems.

8. Contents

8.1.	Lecture (syllabus)	Teaching methods	Notes
1	Presentation discipline. Recap of the main topics in Optoelectronics. Optical communication: a 1rst encounter. Optical communication components overview	ng exercise,	
2	Studies of propagation - Optical fibers: materials, absorption and fabrication; light propagation	teachi	ard
3	Types of optical fibers and their characteristics; Special optical fibers Linear and Nonlinear effects (intermodal, chormatic dispersion, Kerr)	, m presentation, evaluation	ır, blackboe
4	Studies of propagation: waveguides 2D and 3D optical guides.	n, em pr eval	ojecto
5	Fiber optic components for telecommunications (modulators, filters, splitters.	Presentation, heuristic conversation, exemplification, problem presentation, teaching exercise, case study, formative evaluation	ation, pro
6	Optoelectronic integrated circuits (OEICs) for telecom: a. Simple passive: integrated lenses, splitters, couplers, optical switches, resonators. b. Advanced: optical isolators, polarizers, circulators, multiplexers, demultiplexers, routers AWG. Diffraction gratings inscribed in fiber IFG (In-Fiber Gratings). IFG diffraction grating filters. Guides diffraction gratings 2D / 3D. Structure, operation, achievement. Applications.		Use of .ppt presentation, projector, blackboard
7	Functional OEICs: electro-optical, acousto-optical, magneto-optical, electro-optical, thermo-optical. Manufacture of integrated optoelectronic	heul	

	circuits.		
	Optoelectronic systems for telecommunications.		
8	Emitting fiber lasers for telecommunications. Allocation of lambda DWDM ITU Grid. Optical filters (microrings)		
9	Optical Amplifiers: fiber doped, EDFA.		
	Optical components for WDM: AWG, MUX, DMUX, ADMUX (Add-Drop MUX), Tunable filters, star couplers, Wavelength converters		
10	Fiber receivers. Transceivers for fiber optic communications, catalogs.		
11	Fiber communication systems. Point to point links. Shipping. Distances inter-repeater regenerator. Flow Budget, SNR, BER. Sizing attenuation and dispersion based link (Ericsson).		
12	Advanced Software for optical telecommunications: Zemax, Liekki Application Designer, Optiwave, Comsol.		
13	Optical networks. FTTH - Fiber to the home. LIDAR. SmartCity.		
14	Advanced Software for optical telecommunications. Examples and applications.		
8.2.	Applications (lab)	Teaching	Notes
1	Introduction- Recap of main topics in optoelectronics, instrumentation laboratory presentation, work safety rules.	methods	
	General – basic knowledge about optics and optoelectronics	entation	
2	2D optical Guides : simulations using ray mathematical formalism implementation	l implem	
	3D step-index - TE and TM modes study: a. simulations using ray mathematical formalism implementation simulations using Beam Propagation Method, implemented in Optiwave VPIPhotonics Coupling parallel guides: a. simulations using ray mathematical formalism implementation simulations using Beam Propagation Method, implemented in	Simulations with Matlab applications, Optiwave and practical implementation (Educational Kits) and devices.	
2	Optiwave or/and FEM implemented in Comsol	s, Op Kits	
3	Interferometer – Michelson (setup Educational Kit from Industrial Fiber Optics.) and Mach-Zehnder (design). Mach-Zehnder interferometer as a modulator electro-static and dynamic optic: a. simulations using ray mathematical formalism implementation simulations using Beam Propagation Method, implemented in Optiwave or/and FEM implemented in Comsol	atlab applications (Educational	
4	Effects of polarization – setup Educational Kit from Industrial Fiber Optics.	vith M	
5	Basics on optical fiber propagation	ons v	
6	Methods of designing an optical system with catalog data - flow budget equation. Statistical Design methods implementation.	Simulati	
7	Holograms setup with He-Ne Laser, Educational Kit from Industrial		

Bragg diffraction gratings: a. Simulation and b. Mosaic diffraction – practical experiment with - Educational Kit from Industrial Fiber Optics. 9 Application with Spectrometer (Transmittance, Reflectance) 10 Application with Photometer (Industrial Fiber Optics equipment) 11 Audio A/D Transmission System over plastic optical fiber- Educational Kit from Industrial Fiber Optics. Application with VR glasses (distance monitoring) 12 OTDR monitoring device events as the optical transmission networks	
10 Application with Photometer (Industrial Fiber Optics equipment) 11 Audio A/D Transmission System over plastic optical fiber- Educational Kit from Industrial Fiber Optics. Application with VR glasses (distance monitoring) 12 OTDR monitoring device events as the optical transmission networks	
11 Audio A/D Transmission System over plastic optical fiber- Educational Kit from Industrial Fiber Optics. Application with VR glasses (distance monitoring) 12 OTDR monitoring device events as the optical transmission networks	
Kit from Industrial Fiber Optics. Application with VR glasses (distance monitoring) 12 OTDR monitoring device events as the optical transmission networks	
using TraceView Tool.	
13 OTDR equipment for optical network maintenance	
14 Evaluation of the students.	

Bibliography

- 1. Harry J R Dutton Understanding Optical Communications, IBM http://www.redbooks.ibm.com.
- 2. Stefan Nilsson-Gistvik Optical Fiber Theory for Communication Networks, EN/LZT 199210/R1, Ericsson 2002.
- 3. Bahaa E A Saleh, Malvin Carl Teich Fundamentals of Photonics, Wiley, ISBN : 0471213748 (Electronic), 0471839655 (Print).
- 4. Hiroshi Nishihara, Masamitsu Haruna,Toshiaki Suhara Optical Integrated Circuits, ISBN 0 07 046092-2.

Google Reader :

http://books.google.com/books?id=jcJH7rNah_gC&pg=PA356&hl=ro&source=gbs_selected_pages&cad= 0_1&sig=YTHvk5rFJGUGL3qMNT6g2HHf16A#PPA18,M1

- 5. Safa O Kasap Optoelectronics Devices and Photonics: Principles and Practices.
- Prentice Hall ISBN 0-201-61087-6.
- 6. William S C Chang Fundamentals of Guided-Wave Optoelectronic Devices, Cambridge University Press, New York, E-book ISBN-13 978-0-511-64183-1.
- 7. David Large, James Farmer Broadband Cable Access Networks, Morgan Kaufman Publishers 2009, ISBN 978-0-12-374401-2.
- 8. Cataloage telecom: Arris, C-COR, Scientific Atlanta, Cisco, JDSU s.a.
 - 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The discipline content and the acquired skills are in agreement with the expectations of the professional organizations and the employers in the field, where the students carry out the internship stages and/or occupy a job, and the expectations of the national organization for quality assurance (ARACIS).

10. Evaluations

Activity type	10.1	Assessment criteria	10.2	Assessment methods	10.3	Weight in the
						final grade
Course		The level of acquired		- after 7 courses,		- T, max 10 pts.
		theoretical knowledge and		preliminary exam (oral		20%
		practical skills		examination) -optional		

		- Summative evaluation	- E, max 10 pts.
		written exam (theory	60%
		and problems) – 14	
		subjects, one from	
		each lecture (for the	
		students with	
		preliminary exam – 8	
		subjects)	
Applications	The level of acquired abilities	- Continuous formative	
		evaluation	- L, max. 10 pts.
		- practical lab test	20%

10.4 Minimum standard of performance

The presence of the course is considered activity and chronic absenteeism requires further verification of material lost. Presence in all laboratories, obtaining a minimum of 4.5 notes in laboratory activities, and partly written exam.

Lab (L) \geq 4.5 and Essay (E) \geq 4.5 and Exam (T) \geq 4.5 : 0,6E+0,20L+0,20T \geq 4.5

Date of filling in 30.09.2019

Course responsible
Associate prof Ramona Galatus,
PhD eng.

Teachers in charge of applications
Associate prof Ramona Galatus, PhD
eng

Lecturer Lorant Szolga, PhD eng Drd Loredana Buzura Drd Adriana Potarniche

Date of approval in the department

Head of department Prof. Sorin Hintea, PhD eng.